داکز دی ال

دانلود مقالات و جزوات آموزشی - دانشگاهی

داکز دی ال

دانلود مقالات و جزوات آموزشی - دانشگاهی

شبکه عصبی کامپیوتری با استفاده حالت ریسک و تقویت یادگیری

 شبکه عصبی کامپیوتری  با استفاده حالت ریسک و تقویت یادگیری


حفاظت از شبکه های عصبی کامپیوتری در رابطه زیر ساخت های فن آوری اطلاعات،حوادث مخرب و اتفاقی فعال هستند. با توجه به پیچدگی روبه و با سرعتی که رشد از سیستم های حملات می توانند به طور خودکار راه اندازی شوند اقدامات موثر لازم برای کاهش حادثه در شبکه  انجام می شود. این جا به حفاظت  شبکه کامپیوتری عصبی که می توان با استفاده از تقویت یادگیری  و ارزیابی ریسک برای عمل مطلوب ، یا سیاستی که داده های  شبکه کامپیوتری  در این شرایط بهبودی خود را  بدست می آورند اشاره میشود.

شبکه های عصبی اطلاعات را به روشی مشابه با کاری که مغز انسان انجام می دهد پردازش می کنند. آنها از تعداد زیادی از عناصر پرداز شی(سلول عصبی) که فوق العاده بهم پیوسته اند تشکیل شده است که این عناصر به صورت موازی باهم برای حل یک مسئله مشخص کار می کنند .شبکه های عصبی با مثال کار می کنند و نمی توان آنها را برای انجام یک وظیفه خاص برنامه ریزی کرد مثال ها می بایست با دقت انتخاب شوند در غیر این صورت زمان سودمند، تلف می شود و یا حتی بدتر از این شبکه ممکن است نا درست کار کند. امتیاز شبکه عصبی این است که خودش کشف می کند که چگونه مسئله را حل کند ، عملکرد آن غیر قابل پیش گویی است.


خرید و دانلود  شبکه عصبی کامپیوتری  با استفاده حالت ریسک و تقویت یادگیری


ریاضی 6. طراحی برنامه شناختی فازی با استفاده از شبکه های عصبی برای پیش بینی سری زمانی پر هرج و مرج

 ریاضی 6. طراحی برنامه شناختی فازی با استفاده از شبکه های عصبی برای پیش بینی سری زمانی پر هرج و مرج


طراحی برنامه شناختی فازی با استفاده از شبکه های عصبی برای پیش بینی سری زمانی پر هرج و مرج 
چکیده.به عنوان یک طرح کارامد برای ارائه اطلاعات و مکانیسم شبیه سازی متناسب با بررسی های بیشمار و در حوزه های کاربردی طرح شناختی فازی(FCMs) توجه زیادی را از جوامع تحقیقاتی مختلف به سمت خود جلب کرده است. به هر حال FCMs سنتی روش کارامدی را برای تعیین حالت سیستم مورد بحث و تعیین کردن کمیت تلفاتی که مبنای نظریه FCMs را مشخص می کنند ایجاد می کند. بنابراین در بسیاری از موارد، ایجاد FCMs برای سیستم های پیچیده بستگی به توان کارشناسی دارد.مدل های ایجاد شده دستی دارای کمبودهایی از نظر خاص بودن مدل و مشکلاتی از نظر دسترسی به حد معقول خود دارند.در این مقاله ما یک شبکه عصبی فازی را برای بالا بردن توان یادگیری FCMs مطرح می کنیم به گونه ای که تعیین اتوماتیک تابع عضویت و مشخص کردن دلایل مربوط به آن با مکانیسم اثباتی FCMs سنتی ادغام می گردد. به این ترتیب، مدل FCMs از سیستم های تحقیقی به صورت اتوماتیک از داده ها ایجاد شده و بنابراین مستقل از موارد کارشناسی شده می باشند.به این ترتیب تفاسیر مشخصی در ارتباط با دلایل FCMsایجاد شده و به این ترتیب فرایند استنباط درکش اسان تر می گردد. به منظور ایجاد صحت در عملکرد، روش های بیان شده در پیش بینی بی نظمی های سری زمانی تست می گردد.بررسی های شبیه سازی شده کارای رویکردهای مطرح شده را نشان می دهد.

خرید و دانلود  ریاضی 6. طراحی برنامه شناختی فازی با استفاده از شبکه های عصبی برای پیش بینی سری زمانی پر هرج و مرج


صنایع 5. طراحی نقشه های شناختی فازی با استفاده از شبکه های عصبی برای پیش بینی سری زمانی پر هرج و مرج

 صنایع 5. طراحی نقشه های شناختی فازی با استفاده از شبکه های عصبی برای پیش بینی سری زمانی پر هرج و مرج


طراحی نقشه های شناختی فازی با استفاده از شبکه های عصبی برای پیش بینی سری زمانی پر هرج و مرج 
چکیده.به عنوان یک طرح کارامد برای ارائه اطلاعات و مکانیسم شبیه سازی متناسب با بررسی های بیشمار و در حوزه های کاربردی طرح شناختی فازی (FCMs) توجه زیادی را از جوامع تحقیقاتی مختلف به سمت خود جلب کرده است. به هر حال FCMs سنتی روش کارامدی را برای تعیین حالت سیستم مورد بحث و تعیین کردن کمیت تلفاتی که مبنای نظریه FCMs را مشخص می کنند ایجاد می کند. بنابراین در بسیاری از موارد، ایجاد FCMs برای سیستم های پیچیده بستگی به توان کارشناسی دارد.مدل های ایجاد شده دستی دارای کمبودهایی از نظر خاص بودن مدل و مشکلاتی از نظر دسترسی به حد معقول خود دارند.در این مقاله ما یک شبکه عصبی فازی را برای بالا بردن توان یادگیری FCMs مطرح می کنیم به گونه ای که تعیین اتوماتیک تابع عضویت و مشخص کردن دلایل مربوط به آن با مکانیسم اثباتی FCMs سنتی ادغام می گردد. به این ترتیب، مدل FCMs از سیستم های تحقیقی به صورت اتوماتیک از داده ها ایجاد شده و بنابراین مستقل از موارد کارشناسی شده می باشند.به این ترتیب تفاسیر مشخصی در ارتباط با دلایل FCMsایجاد شده و به این ترتیب فرایند استنباط درکش اسان تر می گردد. به منظور ایجاد صحت در عملکرد، روش های بیان شده در پیش بینی بی نظمی های سری زمانی تست می گردد.بررسی های شبیه سازی شده کارای رویکردهای مطرح شده را نشان می دهد.

خرید و دانلود  صنایع 5. طراحی نقشه های شناختی فازی با استفاده از شبکه های عصبی برای پیش بینی سری زمانی پر هرج و مرج


تبدیل حرف به صدا در زبان فارسی به کمک شبکه های عصبی پرسپترون چندلایه ای

 تبدیل حرف به صدا در زبان فارسی به کمک شبکه های عصبی پرسپترون چندلایه ای


عنوان: تبدیل حرف به صدا در زبان فارسی به کمک شبکه های عصبی پرسپترون چندلایه ایفرمت: docتعداد صفحات: 24 صفحهحجم: 378 کیلوبایتقابلیت ویرایش را دارد

خرید و دانلود  تبدیل حرف به صدا در زبان فارسی به کمک شبکه های عصبی پرسپترون چندلایه ای