اثر انگشت یکی از قدیمی ترین روش ها برای شناسایی هویت افراد است.
در این پروژه که در برنامه MATLAB پیاده سازی و اجرا شده است، تشخیص اثر انگشت به کمک تکنولوژی TDNN مورد تحلیل و اجرا قرار گرفته است.
این پروژه از روی 3 مقاله مرجع که در پایگاه های اینترنتی و علمی معتبر(نظیر السویر،ساینس دایرکت و ...) انتشار یافته شده اند پیاده سازی شده است.شما می توانید این 3 مقاله را از طریق این لینک به صورت رایگان دریافت کنید.لازم به ذکر است فایل پی دی اف این مقاله که رایگان بر روی وبسایت ما قابل دریافت است در سایت های دیگر به رایگان قابل دسترسی نیست.برای دریافت اطلاعات بیشتر در مورد این برنامه ابتدا مقالات منتشر شده را مطالعه و سپس برای دریافت فایل اوپن سورس پروژه بر روی دکمه خرید کلیک نمایید. توجه داشته باشید کیفیت و قیمت این پروژه رقابتی و در سراسر محیط نت بی رقیب می باشد.
اصل و ترجمه مقاله کنترل هوشمند کشتی با استفاده از شبکه عصبی و منطق فازی و ژنتیک الگوریتم
عنوان انگلیسی مقاله :
A Genetically Optimized Fuzzy Neural Network for Ship ControllersA Genetically Optimized Fuzzy Neural Network for Ship Controllers
عنوان فارسی مقاله :
یک شبکه عصبی فازی ژنتیکی بهینه شده برای کنترل کشتی
سال انتشار : 2006
کیفیت ترجمه : B
چکیده انگلیسی :
Abstract-A novel approach has been promoted for fuzzy neural ship controllers. An RBF neural network and GA optimization are employed in a fuzzy neural controller to deal with the nonlinearity, time varying and uncertain factors. Utilizing the designed network to substitute the conventional fuzzy inference, the rule base and membership functions can be auto-adjusted by GA optimization. The parameters of neural network can be decreased by using union-rule configuration in the hidden layer of the network. The performance of controller is evaluated by the system simulation conducted with Simulink tools, by which satisfied results have been obtained
.Index Terms- RBF network. Fuzzy control. Genetic algorithm. Union rule. Ship control
چکیده فارسی :
چکیده - منطق فازی عصبی، رویکردی جدید برای کنترل کشتی ها است. یک شبکه عصبی RBF و بهینه سازی GA در یک کنترل عصبی فازی به کار برای مقابله با غیرخطی، زمان های مختلف و عوامل نامشخص است. با استفاده از شبکه طراحی شده به جای استنتاج فازی معمولی، پایگاه قوانین و توابع عضویت می تواند به صورت خودکار توسط بهینه سازی GA تنظیم شود. پارامترهای شبکه عصبی را می توان با استفاده از تنظیمات مجموعه قوانین در لایه مخفی از شبکه کاهش داد. نتایج رضایت بخشی از عملکرد کنترل کننده های شبیه سازی سیستم، که توسط ابزار سیمولینک انجام می گردد دست آمده است.کلمات کلیدی : کنترل فازی. الگوریتم ژنتیک. مجموعه قوانین. کنترل کشتی.