داکز دی ال

دانلود مقالات و جزوات آموزشی - دانشگاهی

داکز دی ال

دانلود مقالات و جزوات آموزشی - دانشگاهی

الگوریتم ژنتیک

 الگوریتم ژنتیک


 الگوریتم ژنتیک (Genetic Algorithm – GA) تکنیک جستجویی در علم رایانه برای یافتن راه‌حل تقریبی برای بهینه‌سازی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتم‌های تکامل است که از تکنیک‌های زیست‌شناسی فرگشتی مانند وراثت و جهش استفاده می‌کند. در واقع الگوریتم‌های ژنتیک از اصول انتخاب طبیعی داروین برای یافتن فرمول بهینه جهت پیش‌بینی یا تطبیق الگو استفاده می‌کنند. الگوریتم‌های ژنتیک اغلب گزینه خوبی برای تکنیک‌های پیش‌بینی بر مبنای تصادف هستند. مختصراً گفته می‌شود که الگوریتم ژنتیک (یا GA) یک تکنیک برنامه‌نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده می‌کند. مسأله‌ای که باید حل شود ورودی است و راه‌حل‌ها طبق یک الگو کد گذاری می‌شوند که تابع fitness نام دارد هر راه حل کاندید را ارزیابی می‌کند که اکثر آنها به صورت تصادفی انتخاب می‌شوند. کلاً این الگوریتم‌ها از بخش های زیر تشکیل می‌شوند: تابع برازش، نمایش، انتخاب، تغییر

فهرست :

فصل اول               

 مقدمه

 به دنبال تکامل…

 ایدۀ اصلی استفاده از الگوریتم ژنتیک

 درباره علم ژنتیک

 تاریخچۀ علم ژنتیک

 تکامل طبیعی (قانون انتخاب طبیعی داروین)

 رابطه تکامل طبیعی با روش‌های هوش مصنوعی

 الگوریتم

 الگوریتم‌های جستجوی ناآگاهانه

الف جستجوی لیست

ب جستجوی درختی

پ جستجوی گراف

 الگوریتم‌های جستجوی آگاهانه

الف جستجوی خصمانه

 مسائل NPHard

 هیوریستیک

 انواع الگوریتم‌های هیوریستیک

  فصل دوم             

 مقدمه

 الگوریتم ژنتیک

 مکانیزم الگوریتم ژنتیک

 عملگرهای الگوریتم ژنتیک

 کدگذاری

 ارزیابی

 ترکیب

 جهش

 رمزگشایی

 چارت الگوریتم به همراه شبه کد آن

 شبه کد و توضیح آن

 چارت الگوریتم ژنتیک

 تابع هدف

 روش‌های کد کردن

 کدینگ باینری

 کدینگ جایگشتی

 کد گذاری مقدار

 کدینگ درخت

 نمایش رشته‌ها

 انواع روش‌های تشکیل رشته

 باز گرداندن رشته‌ها به مجموعه متغیرها

 تعداد بیت‌های متناظر با هر متغیر

 جمعیت

 ایجاد جمعیت اولیه

 اندازه جمعیت

 محاسبه برازندگی (تابع ارزش)

 انواع روش‌های انتخاب

 انتخاب چرخ رولت

 انتخاب حالت پایدار

 انتخاب نخبه گرایی

 انتخاب رقابتی

 انتخاب قطع سر

 انتخاب قطعی بریندل

 انتخاب جایگزینی نسلی اصلاح شده

 انتخاب مسابقه

 انتخاب مسابقه تصادفی

 انواع روش‌های ترکیب

 جابه‌جایی دودوئی

 جابه‌جایی حقیقی

 ترکیب تک‌نقطه‌ای

 ترکیب دو نقطه‌ای

 ترکیب n نقطه‌ای

 ترکیب یکنواخت

 ترکیب حسابی

 ترتیب

 چرخه

 محدّب

 بخش_نگاشته

 احتمال ترکیب

 تحلیل مکانیزم جابجایی

 جهش

 جهش باینری

 جهش حقیقی

 وارونه سازی بیت

 تغییر ترتیب قرارگیری

 وارون سازی

 تغییر مقدار

 محک اختتام اجرای الگوریتم ژنتیک

 انواع الگوریتم‌های ژنتیکی

 الگوریتم ژنتیکی سری

 الگوریتم ژنتیکی موازی

 مقایسه الگوریتم ژنتیک با سیستم‌های طبیعی

 نقاط قوّت الگوریتم‌های ژنتیک

 محدودیت‌های GAها

 استراتژی برخورد با محدودیت‌ها

 استراتژی اصلاح عملگرهای ژنتیک

 استراتژی رَدّی

 استراتژی اصلاحی

 استراتژی جریمه‌ای

 بهبود الگوریتم ژنتیک

 چند نمونه از کاربردهای الگوریتم‌های ژنتیک

  فصل سوم           

 مقدمه

 حلّ معمای هشت وزیر

 جمعیت آغازین

 تابع برازندگی

 آمیزش

 جهش ژنتیکی

 الگوریتم ژنتیک و حلّ مسألۀ فروشندۀ دوره‌گرد

 حل مسأله TSP به وسیله الگوریتم ژنتیک

 مقایسه روشهای مختلف الگوریتم و ژنتیک برای TSP

 نتیجه گیری

 حلّ مسأله معمای سودوکو

 حل مسأله

 تعیین کروموزم

 ساختن جمعیت آغازین یا نسل اول

 ساختن تابع از ارزش

 ترکیب نمونه‌ها و ساختن جواب جدید

 ارزشیابی مجموعه جواب

 ساختن نسل بعد

 مرتب سازی به کمک GA

 صورت مسأله

 جمعیت آغازین

 تابع برازندگی

 انتخاب

 ترکیب

 جهش

فهرست منابع و مراجع

پیوست

واژه‌نامه


خرید و دانلود  الگوریتم ژنتیک


بررسی الگوریتم ژنتیک در TSP و NP-HARD

 بررسی الگوریتم ژنتیک در TSP و NP-HARD


الگوریتم ژنتیک (Genetic Algorithm – GA) تکنیک جستجویی در علم رایانه برای یافتن راه حل تقریبی برای بهینه سازی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریت مهای تکامل است که از تکنیک های زیست شناسی فرگشتی مانند وراثت و جهش استفاده می کند. در واقع الگوریت مهای ژنتیک از اصول انتخاب طبیعی داروین برای یافتن فرمول بهینه جهت پیش بینی یا تطبیق الگو استفاده میکنند. الگوریت مهای ژنتیک اغلب گزینه خوبی برای تکنیک های پیش بینی بر مبنای یک تکنیک برنامه نویسی است که از (GA تصادف هستند. مختصراً گفته می شود که الگوریتم ژنتیک ) یا تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده می کند. مسأله ای که باید حل شود  ورودی است و راه حلها طبق یک الگو کد گذاری میشوند که تابع fitness نام دارد هر راه حل کاندید را ارزیابی می کند که اکثر آنها به صورت تصادفی انتخاب می شوند.

فهرست :

 مقدمه

 به دنبال تکامل…

 ایده اصلی استفاده از الگوریتم ژنتیک

 درباره علم ژنتیک

 تاریخچۀ علم ژنتیک

 تکامل طبیعی (قانون انتخاب طبیعی داروین)

 رابطه تکامل طبیعی با روش های هوش مصنوعی

 الگوریتم

 الگوریتم های جستجوی ناآگاهانه

جستجوی لیست

جستجوی درختی

جستجوی گراف

 الگوریتم های جستجوی آگاهانه

 الف جستجوی خصمانه

  مسائل NP Hard

 هیوریستیک

 انواع الگوریتم های هیوریستیک

فصل دوم

 مقدمه

 الگوریتم ژنتیک

 مکانیزم الگوریتم ژنتیک

 عملگرهای الگوریتم ژنتیک

 کدگذاری

 ارزیابی

 ترکیب

 جهش

 رمزگشایی

 چارت الگوریتم به همراه شبه کد آ ن

 شبه کد و توضیح آن

 چارت الگوریتم ژنتیک

 تابع هدف

 روش های کد کردن

 کدینگ باینری

 کدینگ جایگشتی

 کد گذاری مقدار

 کدینگ درخت

 نمایش رشته ها

 انواع روش های تشکیل رشته

 باز گرداندن رشته ها به مجموعه متغیرها

 تعداد بیت های متناظر با هر متغی ر

 جمعیت

 ایجاد جمعیت اولیه

 اندازه جمعیت

 محاسبه برازندگی (تابع ارزش)

 انواع روش های انتخاب

 انتخاب چرخ رولت

 انتخاب حالت پایدار

 انتخاب نخبه گرایی

 انتخاب رقابتی

 انتخاب قطع سر

 انتخاب قطعی بریندل

 انتخاب جایگزینی نسلی اصلاح شده

 انتخاب مسابقه

 انتخاب مسابقه تصادفی

 انواع روش های ترکیب

 جابه جایی دودوئی

 جابه جایی حقیقی

 ترکیب تک نقطه ا ی

 ترکیب دو نقطه ای

 ترکیب یکنواخت

 ترکیب حسابی

 ترتیب

 چرخه

 بخش نگاشته

 احتمال ترکیب

 تحلیل مکانیزم جابجایی

 جهش

 جهش باینری

 جهش حقیقی

 وارونه سازی بیت

 تغییر ترتیب قرارگیر ی

 وارون سازی

 تغییر مقدار

 محک اختتام اجرای الگوریتم ژنتیک

 انواع الگوریتم های ژنتیکی

 الگوریتم ژنتیکی سری

 الگوریتم ژنتیکی موازی

 مقایسه الگوریتم ژنتیک با سیستم های طبیعی

 نقاط قوت الگوریتم های ژنتیک

 استراتژی برخورد با محدودیت ها

 استراتژی اصلاح عملگرهای ژنتیک

 استراتژی اصلاحی

 استراتژی جریمه ای

 بهبود الگوریتم ژنتیک

 چند نمونه از کاربردهای الگوریتم های ژنتیک

فصل سوم

 مقدمه

حلّ معمای هشت وزیر

 جمعیت آغازین

 تابع برازندگی

 آمیزش

 جهش ژنتیکی

 الگوریتم ژنتیک و حلّ مسألۀ فروشندة دوره گرد

به وسیله الگوریتم ژنتیک   TS P  حل مسأله

 TS P  مقایسه روشهای مختلف الگوریتم و ژنتیک برای

 نتیجه گیر ی

 حلّ مسأله معمای سودوکو

 حل مسأله

 تعیین کروموزم

 ساختن جمعیت آغازین یا نسل اول

 ساختن تابع از ارزش

 ترکیب نمونه ها و ساختن جواب جدید

 ارزشیابی مجموعه جواب

 ساختن نسل بعد

مرتب سازی به کمک  G A

 صورت مسأله

 جمعیت آغازین

 تابع برازندگی

 انتخاب

 ترکیب

 جهش

فهرست منابع و مراجع

پیوست

واژه نامه

نقاط بهینه محلی و بهینه کلی

 چارت الگوریتم ژنتیک

 ترکیب تک نقطه

 ترکیب جایگشتی

 جهش کدینگ جایگشتی

 جهش کدینگ مقدار

 کدینگ درختی

 نمونه کروموزوم الگوریتم ژنتیکی

 روش سری

 روش محاطی

  چرخه رولت

  جابجایی چند نقطه

  ترکیب تک نقطه ای

  ترکیب دو نقطه ای

  ترکیب یکنواخت

  شبیه سازی جهش به کمک نمودار

  جهش باینری

  جهش:وارونه سازی بیت

  جهش:تغییر ترتیب قرارگیری

  جهش: وارون ساز ی

  جهش: تغییر مقدار

  نمودار بررسی رابطه های جمعیت، کیفیت جواب و معیار توقف بایکدیگر

 چینش هشت مهره وزیر در صفحه شطرنج بدون تهدید یکدیگر

جدول سودوکو

خرید و دانلود  بررسی الگوریتم ژنتیک در TSP و NP-HARD