الگوریتم بهینه سازی توده ذرات در ابتداییترین شکل خود یک روش تکراری دستهجمعی آشفته با تاکید بر همکاری است. این الگوریتم تا حدی تصادفی بوده و بدون مکانیزم انتخاب است و از حرکت گروهی پرندگان و زنبورها الهام گرفته است. رفتار جمعی تمام افراد جمعیت باعث یک همگرایی درنقطهای نزدیک به جواب بهینه مطلق میشود. نقطه قوت این الگوریتم عدم نیاز به یک کنترل سراسری است. هرفرد دراین الگوریتم خود مختاری نسبی دارد که میتواند درسراسر فضای جستجو حرکت کند و میبایست با سایر افراد همکاری داشته باشد. در این گزارش ابتدا نحوه کارکرد کد نوشته شده مورد بررسی قرار میگیرد. در فصل دوم الگوریتم بهینه سازی توده ذرات به طور مفصل توضیح داده میشود. در فصل آخر نیز نحوه پیاده سازی این الگوریتم بر روی کد Matlabتوضیح داده خواهد شد.
الگوریتم PSO یک الگوریتم جستجوی اجتماعی است که از روی رفتار اجتماعی دستههای پرندگان مدل شده است. در ابتدا این الگوریتم به منظور کشف الگوهای حاکم بر پرواز همزمان پرندگان و تغییر ناگهانی مسیر آنها و تغییر شکل بهینهی دسته به کار گرفته شد . در PSO، ذرات در فضای جستجو جاری میشوند. تغییر مکان ذرات در فضای جستجو تحت تأثیر تجربه و دانش خودشان و همسایگانشان است. بنابراین موقعیت دیگر توده ذرات روی چگونگی جستجوی یک ذره اثر میگذارد . نتیجهی مدلسازی این رفتار اجتماعی فرایند جستجویی است که ذرات به سمت نواحی موفق میل میکنند. ذرات از یکدیگر میآموزند و بر مبنای دانش بدست آمده به سمت بهترین همسایگان خود میروند اساس کار PSO بر این اصل استوار است که در هر لحظه هر ذره مکان خود را در فضای جستجو با توجه به بهترین مکانی که تاکنون در آن قرار گرفته است و بهترین مکانی که در کل همسایگیاش وجود دارد، تنظیم میکند.