داکز دی ال

دانلود مقالات و جزوات آموزشی - دانشگاهی

داکز دی ال

دانلود مقالات و جزوات آموزشی - دانشگاهی

پیش بینی انقباض خشک بتن به کمک شبکه عصبی مصنوعی

 پیش بینی انقباض خشک بتن به کمک شبکه عصبی مصنوعی


پروژه مطالعاتی راجع به "پیش بینی انقباض خشک بتن با کمک شبکه عصبی مصنوعی " است. شامل فایلهای اصل مقاله انگلیسی و ترجمه و همچنین پاورپینت مربوط به آن.

خرید و دانلود  پیش بینی انقباض خشک بتن به کمک شبکه عصبی مصنوعی


برق 87. پیشبینی قیمت کوتاه مدت مبتنی بر موجک-ELM ترکیبی، برای بازار برق

 برق 87. پیشبینی قیمت کوتاه مدت مبتنی بر موجک-ELM ترکیبی، برای بازار برق


پیشبینی قیمت کوتاه مدت مبتنی بر موجک-ELM ترکیبی، برای بازار برق 
    چکیده ــ پیشبینی دقیق قدمت برق، چالشی بزرگ برای شرکت کنندگان و مدیران بازار می باشد، زیرا قیمت الکتریسیته دارای نوسانات بسیاری است. پیشبینی قیمت نیز، مهم ترین هدف مدیریتی برای مشارکت کنندگان در بازار است، چرا که مبانی بیشینه کردن سود را، تشکیل می دهد. این مطالعه، عملکرد یک تکنیک شبکه عصبی جدید را بنام ناشین یادگیری سریع (ELM)، در مساله پیشبینی قیمت، بررسی می کند. با در نظر داشتن خط مربوط به بازهای برق که دارای نوسانات بسیاری در قیمت هستند، تکیه به یک تکنیک، خیلی هم سودمند نمی باشد. بنابراین، ELM با تکنیک موجک همراه شده است و یک مدل پیوندی (مرکب) را به نام WELM (ELM مبتنی بر موجک) را تشکیل داده است تا دقت پیشبینی و نیز قابلیت اطمینان آن را، بهبود بخشد. در این روش، ویژگی های بی همتای هر ابزار، تکریب شده اند تا الگوهای مختلفی را در اطلاعات، بدست آورند. قدرت این تکنیک، با استفاده از روش مجموع شده، بهبود بیشتری می یابد. عملکردهای مدل های ارایه شده، با استفاده از اطلاعات موجود در بازارهای برق انتاریو، PJM، نیویورک و ایتالیا، ارزیابی شده اند. نتایج آزمایشی نشان می دهند که روش پیشنهادی، یکی از مناسب ترین تکنیک های پیشبینی قیمت می باشد.     کلیدواژه ها: شبکه عصبی مصنوعی (ANN)، تجدید ساختار، روش مجموع، ماشین یادگیری سریع (ELM)، پیشبینی قیمت، تبدیل موجک

خرید و دانلود  برق 87. پیشبینی قیمت کوتاه مدت مبتنی بر موجک-ELM ترکیبی، برای بازار برق


برق 80. برنامه توسعه ی تولید و انتقال، با در نظر گرفتن حد بارگذاری با استفاده از نظریه ی گیم و ANN (شبکه ی عصبی مصنوعی)

 برق 80. برنامه توسعه ی تولید و انتقال، با در نظر گرفتن حد بارگذاری با استفاده از نظریه ی گیم و ANN (شبکه ی عصبی مصنوعی)


برنامه توسعه ی تولید و انتقال، با در نظر گرفتن حد بارگذاری با استفاده از نظریه ی گیم و ANN (شبکه ی عصبی مصنوعی)
چکیده__ در این مقاله برنامه ی توسعه ی تولید و انتقال (TEF , GEP) با در نظرر گرفتن حد بارگذاری سیستم قدرت مطالعه شده است. از روش شبکه های عصبی مصنوعی (ANN) برای ارزیابی حد بارگذاری سیستم قدرت _به دلیل ویژگی های حساسیتش_ استفاده شده است. بازسازی سیستم قدرت و جداسازی سازمان های تصمیم گیرنده ی توسعه ی تولید و انتقال، هماهنگی میان شرکت های تولید و انتقال را حیاتی تر ساخته است. از دیگر سو، پایداری ولتاژ، یکی از مشخصه های سطح امنیتی سیستم قدرت می باشد. در این مقاله، نخست الگوی بار یک سیستم قدرت 6-شینه توسعه یافته، و سپس با استفاده از مشخصه های حساسیت ANN بهترین شین برای افزایش بار، تعیین می شود. آنگاه، ارتباط متقابل استراتژیکی میان شرکت انتقال (trasco) و شرکت تولید (GenCo) برای TEP و GEP در یک بازار برق رقابتی _ با استفاده از تیوری گیم (GT)_ ارایه می شود. الگوریتم ارایه شده از سه مرحله ی بهینه سازی برای تعیین تعادل نش _بطوری که سودمندترین روش برای هردو سوی گیم در یک گیم برنامه ریزی توسعه، یافتنی باشد_ تشکیل می شود.

خرید و دانلود  برق 80. برنامه توسعه ی تولید و انتقال، با در نظر گرفتن حد بارگذاری با استفاده از نظریه ی گیم و ANN (شبکه ی عصبی مصنوعی)


برق 77. کنترل برداری بدون-سنسورسرعت یک موتور القایی بدون یاتاقان با استفاده از ناظر (Obderver) سرعت معکوس شبکه عصبی مصنوعی

 برق 77. کنترل برداری بدون-سنسورسرعت یک موتور القایی بدون یاتاقان با استفاده از ناظر (Obderver) سرعت معکوس شبکه عصبی مصنوعی


کنترل برداری بدون-سنسورسرعت یک موتور القایی بدون یاتاقان با استفاده از ناظر (Obderver) سرعت معکوس شبکه عصبی مصنوعی
   چکیده__ به منظور جلوگیری از اثر تشخیص سرعت بر پایین آمدن پایداری و دقت سیستم موتور القایی بدون یاتاقان، این مقاله تکنیکی تازه برای مشاهده سرعت با استفاده از روش معکوس شبکه عصبی مصنوعی (ANN)، ارایه می دهد. زیرسیستم درونی تشکیل شده از جریان های سیم پیچی سرعت و گشتاور، مدل شده اند و سپس معکوس سازی آن با استفاده از ANN صورت گرفته است. سرعت موتور، بطور موفقیت بخشی با سری کردن زیرسیستم اصلی با معکوسش، مشاهده شده است. سرعت مشاهده شده به حلقه کنترل سرعت پیشخور (فیربک) شده، و ازینرو درایو برداری بدون سنسور-سرعت محقق می شود. سودمندی این روش، با استفاده از نتایج آزمایشی نشان داده شده است.    اصطلاحات مرتبط__ معکوس شبکه عصبی مصنوعی (ANN)، موتور القایی بدون یاتاقان (BIM)، بدون سنسور سرعت، کنترل برداری.

خرید و دانلود  برق 77. کنترل برداری بدون-سنسورسرعت یک موتور القایی بدون یاتاقان با استفاده از ناظر (Obderver) سرعت معکوس شبکه عصبی مصنوعی